Predictable Duty Cycle Modulation through Coupled Pairing of Syringes with Microfluidic Oscillators

نویسندگان

  • Sasha Cai Lesher-Perez
  • Priyan Weerappuli
  • Sung-Jin Kim
  • Chao Zhang
  • Shuichi Takayama
چکیده

The ability to elicit distinct duty cycles from the same self-regulating microfluidic oscillator device would greatly enhance the versatility of this micro-machine as a tool, capable of recapitulating in vitro the diverse oscillatory processes that occur within natural systems. We report a novel approach to realize this using the coordinated modulation of input volumetric flow rate ratio and fluidic capacitance ratio. The demonstration uses a straightforward experimental system where fluid inflow to the oscillator is provided by two syringes (of symmetric or asymmetric cross-sectional area) mounted upon a single syringe OPEN ACCESS Micromachines 2014, 5 1255 pump applying pressure across both syringes at a constant linear velocity. This produces distinct volumetric outflow rates from each syringe that are proportional to the ratio between their cross-sectional areas. The difference in syringe cross-sectional area also leads to differences in fluidic capacitance; this underappreciated capacitive difference allows us to present a simplified expression to determine the microfluidic oscillators duty cycle as a function of cross-sectional area. Examination of multiple total volumetric inflows under asymmetric inflow rates yielded predictable and robust duty cycles ranging from 50% to 90%. A method for estimating the outflow duration for each inflow under applied flow rate ratios is provided to better facilitate the utilization of this system in experimental protocols requiring specific stimulation and rest intervals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Phase Noise Reduction Technique in LC Cross-coupled Oscillators with Adjusting Transistors Operating Regions

In this paper, an intuitive analysis of a phase noise reduction technique is done, and then a modified structure is proposed to achieve higher phase noise reduction than the original one. This method reduces the impact of noise sources on the phase noise by decreasing closed-loop gain in zero-crossings points and moving this high closed-loop gain to the non-zero-crossings points. This reduction...

متن کامل

Chaotic Switching of Phase States in Time-Varying Coupled Circuits

Synchronization phenomena in complex systems are very interesting to describe various higher-dimensional nonlinear phenomena in the field of natural science. Studies on synchronization phenomena of coupled oscillators are extensively carried out in various fields, physics [1]-[4], biology [5], [6] engineering [7]-[11] and so on. Because many researchers suggest that synchronization phenomena of...

متن کامل

Dynamics of a large number of coupled, self-excited oscillators in a ring

Interconnected, self-excited oscillators are often found in nature and in engineered devices. In this work, a ring of van der Pol oscillators, each of which is connected to its immediate neighbors, is considered. The focus is on the emergent behavior of a large number of oscillators. The conditions under which time-independent solutions are obtained are determined, and the linear stability of t...

متن کامل

Performance Improvement in Passive Backscatter Based RFID System with Low DCR Modulations

This paper presents application of the low Duty Cycle Ratio (DCR) modulations: isochronous Digital Pulse Position Modulation (DPPM) and anisochronous Digital Pulse Interval Modulation (DPIM) in backscatter based passive RFID communication system. The proposed modulations are compared to commonly used Amplitude Shift Keying (ASK) modulation. Low DCR modulations are customized for data transmissi...

متن کامل

Dynamic turning control of a quadruped locomotion robot using oscillators

The authors have proposed a dynamic turning control system of a quadruped robot by using nonlinear oscillators. It is composed of a spontaneous locomotion controller and voluntary motion controller. In this article, capability of dynamic turning motion of the proposed control system is verified through numerical simulations and hardware experiments: Various turning speed and orientation make th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014